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ABSTRACT
In this paper, we examine some splitting techniques for low Mach number
Euler flows. We point out shortcomings of some of the proposed methods and
suggest an explanation for theilr inadequacy. We then present a symmetric
splitting for both the Euler and Navier-Stokes equations which removes the
stiffness of these equations when the Mach number is small. The splitting is

shown to be stable.
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INTRODUCTION

For many computational problems in low speed fluid-dynamics, it has been
customary to use the iIncompressible Euler or Navier-Stokes equations. There
are essentially two reasons for doing this: there is one less variable, since
the density remains constant, and the stability limit is independent of the
sound speed. Recently, however, there has been increased interest in studying
compressibility effects even for low Mach number fluid flows. The compress-
ible equations, unfortunately, have stiff coefficients due to the disparity in
the magnitude of the flow velocity and the speed of sound. To overcome this
difficulty various splitting methods have been proposed to remove the stiff-
ness from the matrix coefficients of the equations, [3, 4, 7]. Some of these
methods, however, have not performed as anticipated; in féct, often, for the
the stipulated stability limits on the time step, the calculations diverged.

In this paper, we first propose an explanation for this behavior. We
give examples in the first three sections which show that splittings resulting
in matrices which are not simultaneously symmetrizable (such as in [7]) may be
ill-posed at the p.d.e. level. Similar results are presented for some
explicit numerical schemes, both finite difference and spectral. Thus, the
intent of these sections is to caution against unrestrained use of splitting
methods.

In Section 1V, we present a transformation of variables which symmetrizes
the Euler equations. Under the assumption of low Mach number flow, we are
able to propose an efficient splitting technique for the compressible equa-
tions. The resulting algorithm, given both for the Euler and Navier-Stokes”
equations, is unstiff for the nonlinear field, and the other split operators

are linear and may therefore be solved implicitly with ease. (The implicit-



ness 1s necessary to overcome the stiffness which was transferred into the
linear part.) The total scheme may be shown to be stable under the less re-
strictive time step of the nonlinear part. In a future paper, we intend to

present computational results for our proposed algorithm.

1. A MODEL PROBLEM

Consider the Initial value problem for the following symmetric hyperbolic

system

) DR e

B 1s a real number, |B| > 1. The eigenvalues of A are

and therefore an explicit scheme will have the CFL conditiom

At < ‘1’—1"]‘-2-'];- Ax. (1.2)
For example, the Lax-Wendroff scheme
n+l _ AtA n _ n A (At) n n

is stable under the condition

Ea+ s <1




Suppose mnow that one attempts to advance the solution of (l.l1), equation by
equation, rather than to use the form of the system as in (1.3). This amounts

to splitting the matrix A 1into the sum of two matrices B and C
_(1 B\, (0 O\ _
A-( )+(B )—B+c (1.4)

and advancing the solution by using first the equation

wél) =B wil) (1.5)
and then
W = ¢ Wl (1.6)

where the initial value of (l1.6) at every time step 1is the value of w(1)

obtained after advancing (1.5) one time step. This procedure yields a scheme
which is first order in time and second order in space. We note that the sys-
tems defined in (1.5) and (1.6) are strictly hyperbolic and hence well-
posed. The eigenvalues of B and C are 0 and 1, and therefore the Lax~

Wendroff scheme for (1.5) and (1.6) separately will be stable under the condi-

tion
<1 (1.7)

>
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allowing a time step much larger than the one allowed by (1.2) if B is a

large number. However, even if a numerical method 1s stable for (1.5) and

(1.6) separately, it need not be stable for the combination of (l.5) and

(1.6). 1In fact, consider the Lax-Wendroff scheme for (1.5) and (1.6). The

amplification matrix G of the combined scheme is given by



(g(a) + 821 - gg))? -8g(E)(1 - g(a)))
G = (1.7)
-8(1 - g(&)) g(g)
where
£ = sin E%E
2.2 2 At
g(€) =1 = 207" + 21Ag/1 - & A=

We will show that the eigenvalues of G are greater than one 1n modulus for

any A, and thus the combined scheme 1is unconditionally unstable. To do

that we look at the mode £ =1:

G(g

(1 - a2+ it B8(1 - 22)ym? )
1)= .

2
—2ax’ 1 - 2

The eigenvalues of G uxk are given by

2 2.4 2.4 2
M =1 = 20 + 28 A & /% A+ 1 - 2k2 28
The scheme is clearly unstable for

2,2

since in this case u+ > 1 for B >1 and p > 1 for B < 1. It

is aiso easily verified that u+ > 1 for B8 > 1 for any . Thus, the

splitting (1.5) = (1.6) is the wrong way of splitting.

Perhaps a deeper insight is obtained if we Fourler transform (l.1),

(1.5), and (1.6). The solution operator for (l.l) in Fourier space is

i ot L

R
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Ew,At) = et

where w is the dual Fourier variable.

The solution operator for the split scheme (1.5), (1.6) over one time

step 1is

iBwAt 1CwAt
=e e .

S(w,At) (1.8)

For every fixed w

t/At

S(w,At) » E(t).

However, since c2 = c, B2 = B, an expansion of the right *»2nd side of (1.8)

shows that

iwAt

S(w,at) = [1 + B - 1)111 + c(e™2 - ).

If we put Atw =7, we get

432 -1 23)

S(w,At) = (I = 2B)(I - 2C) =(
-28 -1

and for any |B| >1 g(w,At) has eigenvalues larger than 1. This illus-

trates the instability.

2. THE ISENTROPIC EULER EQUATIONS

The isehtropic Euler equations in one space dimension may be written as

v, = [;]t - - [$p lép] [;]x =Aw, (2.1)



where u 1is the velocity, p 1s the pressure, p is the density, and Y

is the adiabatic constant of the fluid. The normalized equation of state for

the fluid is

p=p. (2.2)

The eigenvalues of the matrix A 1in (2.1) are u - c¢ and u + ¢, where
c = J%E- is the sound speed. Thus, if we were to solve (2.1) by an explicit

difference scheme, we would have to impose a CFL condition of the form

>
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const (2.3)

We wish to study (2.1) in the low mach number regime so that P =Py

where Po is the base flow density. We define

Then [€| << 1. Using (2.2) we conclude
- = - Y 2
P~ Py = = Yepy + 0(€7),

where p; 1s the base flow pressure.

One possible splitting for (2.1) [7], is to write A as the sum of two

matrices A1 and AZ as follows

0 l/pO u 1/p - l/DO

A=- - = A + A (2.4)
YPg, 0 Y(P‘Po) u




We then advance the solution of (2.1) by first using the equation

(1) _ ()
Wt = Alwx ’ (2.5)
and then the equation
(2) _ (2)
Wt = Azwx . (206)

Since A; 1is a constant matrix, we could solve (2.5) analytically thus doing
away with any CFL restriction. The eigenvalues of the matrix A,, however,
are -uz i/?'coe + 0(62). Thus, the splitting (2.5 = 2.6) is not a
hyperbolic splitting.

To examine the stability of the split scheme, we examine the Fourier
transform of the solution operator, S(At), over one time step. The Fourier

transform of S is %:

- iAzwAt iAlwAt
S(w,At) = e e . (2.7)

let a = c, wAt, and B = /7'c0 € wAt.

After some computation, we obtain

iAlmAt cosa —isina/copo
e = .

-icoposinu cosa

To first order in €, we may write A, as

u E/DO




We then have

coshB

~isinhB /¥y ¢

P
iAzwAt fuwAt 00
e = e .
-ivy coposinhs cosh8
Hence,
coshBcosa - Eiﬂhgﬁlﬂi ; (coshRsina + sinhBcosa)
a juwAt 7Y ODO
S(w,At) = e

ipoco(/7'sinh8cosa - coshBsina) Yy sinh8sino + coshBcosa

The eigenvalues of S(w,At) are roots of the polynomial

(y-1)

vy

p(}) = kz - (2coshBcosa + sinhBsinadx + 1 = 0.

By Miller”s criterion [8] the roots of p(}) are lnside the unit disc if
and only if

8 = |coshBcosa + x=i sinhBsina | 1.

27y
If we let a = <, wAt =w, then 06 > 1, whenever 8 > O. Hence, at least
one of the eigenvalues of S(w,At) lies outside the unit disc in a neigh-
borhood of & = m.

If we were to solve (2.5) - (2.6) using a pseudospectral difference

scheme, we would have to impose a CFL restriction of

e A ———— - — oot cont
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to ensure the stability of our split scheme. For 1f we were to use the

Fourier modes {eikx}, k = =N,eee N, as a basis for our numerical scheme

the mesh width Ax for the grid of collocation points would be given by

_ 27

Ax = oy ¢

Since our stability condition dictates that

cONAt <m,

the CFL condition for our scheme assumes the form

<.
-c

0

> N>
N A

Nothing has been gained, therefore, from this splitting technique.

3. THE EULER EQUATIONS

We write the Euler equations in one space dimension as

0 1
P 2 p
w, = [m] = = |-u 2u 1 m = Aw_. (3.1)
P t -czu c2 u P X -
Here P, m, P, and u denote the density, the momentum, the pressure,

velocity, and ¢ 1is the sound speed of the fluld. We analyze (3.1) in the
low mach number regime.

The eigenvalues of A are u=¢, u and u + c. Therefore, an explicit
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difference scheme for (3.1) would have a CFL restriction of the form

const

At
HS_W . (302)

One possible splitting for (3.1) could be obtained by writing A as

0 0 0
A=-~|0 0 1 - -u2 2u Of = A, + A (3.3)
1 2
c2 0 -c u 2— 2
0 ¢ =c, u

where ¢4 1s the sound speed of the base flow. We then solve (3.1) by using

first the equation

wgl) = Alwil) (3.4)
and then
WEZ) - Azw)({z). (3.5)

The advantage of such a splitting, it would seem, is that since AI is a
constant matrix we can obtain an analytical solution of (3.4) without any
restriction on the time step. Further, since the eigenvalues of A, are O,
-u, and ~-2u, we can solve (3.5) by a difference scheme with a large CFL con-

dition of the form

At const

& S ThT - (3.6)

We examine the Fourier transform of the solution operator S(at) over one
~ iAzmAt iAlwAt

time step. Then S(w,At) = e e .

Let o = c. wAt

0




-]1]=

We choose u =0 and n > 0. Then

— isina 1+cosa —
1 L D e————
c0 CZ
0
iAl(uAt {sina
e =| 0 cosa s
0
| O -icosina cosa  _J
and
iAzmAt 1 0
e =10 .
1 —incoa 1
Hence
isina 1+cosa
1 - 5052
CO c2
0
S(w,At) =1 0 cosa - 1simo .
o
0 -i(ncoa coso + cosina) (-nasina + cosa)

The eigenvalues of g(m,At) are 1, and the roots of the polynomial

p W) = xz ~(2cosa - nasina) + 1 = 0,

By Miller”s criterion the roots of p(}) are inside the unit disc if and

only 1if

2cosa - nasinal <1

6 = | 5 <
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Let o = -1m + 8.

Then 6 =1 +nué + 0(62).

Hence g(w,At) has at least one root outside the unit disc near o =

cOwAt = 7. Thus, this proposed splitting, once more, has undesirable proper-
ties. If we were to solve (3.4) - (3.5) using a pseudospectral difference

scheme, we would have to impose a very restrictive CFL condition of the form

At const
TRy
x.—

c

Gugtafsson and Guerra [3] showed how to split (2.1) in a way that avoids
the pitfalls pointed out above. The main idea in their work was to obtain two
symmetric split operators. This, of course, is harder to do for more compli-
cated systems. 1In the following sections, we generalize this approach to the

problem of obtaining split operators which are simultaneously symmetrizable in

the case of the full Euler and Navier-Stokes equations.

4. CORRECT SPLITTING FOR THE EULER EQUATIONS

In the preceding sections, we gave examples of "natural" splitting proce=-
dures which led either to 1instabilities or to stability conditioms which at
best did not represent an improvement over the original ones. A common fea-
ture of those split operators was that they were not slimultaneously symme-
trizable.

To avold the dangers pointed out by these examples, we propose to remove .
the stiffness of a given stable symmetric operator by instituting a splitting
procedure such that all the split-off operators are simultaneously symme—
trizable. TIf each of these new operators 1s discretized In a stable manner,

then the overall scheme will remain stable.




T
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A prescription for a general operator achieving this goal 1is not known to
use. We would like, however, to suggest such a procedure for compressible, low
Mach number flows governed by either the Euler or the Navier-Stokes equa-
tions. These systems are chosen in view of the "counter—examples" given in
Section 3. The Euler equations may be symmetrized nonlinearly by using

"entropy~variables" [5, 6]. The system thus obtained is of the form

-3

Pq, + 121 Aiqxi =0 (4.1)
where P and the Ai's are symmetric matrix functions of the vector q. The
premultiplying matrix P 1s usually non—-sparse, and hence it is not clear how
to remove the stiffness (if there is any) from the A;"s. In the Euler equa-
tions, it is well known that the eigenvalues of Ay are u, ut+g¢ u-c
where u 1s the x-component of velocity and ¢ 1s the speed of sound. At
low Mach number flows, u < ¢ everywhere; hence, a Von-Neumann like stability

condition

Ax

At '<_T{1-F"-C- (4.2)

gives an over-restricted condition. 1In this sense, the system is stiff (see
Sections 2 and 3).

Our approach is motivated by previous results [1] wvalid for the
linearized frozen coefficient case.

Consider the Euler equations for a gas in their nonconservative form in
two-space dimensions (the three-dimenslonal case follows directly from the

results of this section):
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~

3V .~ 9V . 2 av

at 9x Yy
where G is the column vector (S,G,;,;) and the coefficient matrices
are given by
v P 0 0 v 0 0 0
A = 0 u 9 1/p , g =|0 v 9 Oh L (ha4)
0 0 u 0 0 0 v 1/p
0 Yp 0 u 0 0 Yp 0

where p,u,v,p and Y are, respectively, the density, the velocity com—
ponents in the X and y directions, the pressure and the ratio of
specific heats at constant pressure and volume (v = Cp/cv)° Next,

nondimensionalize the quantities in (4.3) as follows:

Ly s
t = T XS g Y=g P = 3:
(4.6)
_u _ Vv __p
u = Frait v v P 2
where the subscript © indicates free stream condition and L is a

reference length. Equations (4.3) and (4.4) then retain the same form exactly

with the superscript - removed. In particular, the dimensionless speed of

sound retains its functional form, i.e.,

= YYp/P . (4.7)

0
]
:|n>

We now propose the following change of variables:




where c1

-]5=

(4.8)

U < a2®
<

Yy (y~-1)

is a constant to be specified later. One may then cast (4.3) in

the form of (4.1) where:

- -
c
:;? 0 0 0
1
0 0 (4.9)
P=1o 1 0
0 0 1
] J
2 2 2 -
= 0 o | Sv o0 < 0
c1/7' ¢ cl/y
u 0 /i;I c 0 v 0 0
’ A2 =
2 y=1
0 u 0 — 0 v WAL
c1/Y Y
/1:l c 0 u 0 0 /1:1 c v
Y - — Y
(4,10)
With these definitions of P, Ay, and A, the Euler equations
Pq, + Aqu + Aqu =0 (4.11)
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are symmetric hyperbolic.

We now wish to motivate the way in which the operators in (4.11) (A1 %;

and A2 %;-) are split. The starting point is the fact that we are here

interested in low Mach number flow. Such flows are characterized by two

facts: the first is that c2 > u2 + v2 everywhere; secondly, for reason—

able 1nitial conditions
2 2
c“(x,y,t) = c_

5 K 1. (4.12)
c
-~
For example, at steady state
2 2
c“(x,y) = ¢ T, -T
[ st © _y=1 2
5 < — = M (4.13)
c . o
where TSt is the stagnation temperature, M is the free stream Mach

number; hence, for low Mach numbers (4.12) 1s valid. In view of the above, we
choose C) = Cys "and we rewrite (4.11) as follows
+ =
Pq, + (R1 + Sl)qx + (R2 SZ)qy 0 (4.14)

where




-17-

- - = -y
c2 CZ‘Ci c2 cz-c2
- 0 0 — Vv 0 0
2 Vo 2 /Y
e C?Y Ca Cu? Y
2o02
=~ u 0o /l(eoy, 0o v 0 0
c VY Y
o«
R, = R, = )
c“=c
0 0 u 0 — 0 v /—i- 1(c—cm)
c vy Y
o0
0 /l—l (c=c ) O u 0 0 #i:l (c=c ) v
Y ° Y ®
L_ — L -
and
0 — 0 0 7] [0 0 —_— 0 =
Yy Y
c —_—
© -1
= 0 0 Ve, 0 0 0 0
c —
0 0 o o0 —= 0 0 /-"—Y-l- c,
7Y
- -1
— — 0
| O /YY c, 0 0 N _0 0 = c, |

The four eigenvalues of P"lR1 are

c [}
A=y, u, u s (e - ol + 2 () + L (22,

41 42

It is clear from (4.11) that
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c-c 5_(Y'1)M;

while

F— s 0(1)0

Thus, none of the eigenvalues gets to be large unlike the original unsplit
scheme which had eigenvalues u, u, u £+ ¢ (recall that in our case u = 0(1)
while ¢ =~ 1/M )

Next we notice that 51 and 82 are constant matrices. A difficulty
remains however in the nonlinear element of P. We shall deal with this as
the method of solution is presented.

Step I in the solution of (4.12) is to numerically advance
Pqt + qux + qu =0 (4.15)
by one time step.  We have just demonstrated that stability criterion for

(4.15) 1s not stiffly restricted. In fact, for most explicit schemes, to

within a constant of order unity,

Ax Ay 1
st < ol (1oToleme T » ToT*le=el])?

as compared with (4.2). The gain is obvious. Step II in the procedure is to

solve

Pqt + Squ + Squ = 0. (4.16)

The initial conditions for (4.16) are given by the solution to (4.15) at

t = At. Notice that while Sy and S, are constant matrices, P has the
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nonlinear element cz/cf. This means that removal of the stricter time-step
due to Sl and S, (At £ const. Ax/co) cannot be done easily via implicit
method implementation of (4.16). To overcome this difficulty, we split St
and 82 as follows:
I 11 I I1
S1 = S1 + S1 82 = 82 + 82
where
c
0 = 0 0 0 0 0 0
c VY v-1
Io|= 0 0 o oIT _ 0 0 el (4.17)
1 4 1 0 ¢
0 0 0 0 =1
0 0 0 0 0 Y— ¢ 0 0
Y o
and
c, - - -
[0 o = o 0
vy
0 0
Si _10 0 0 0 S;I - . (4.18)
Cy -1
= 0 0 0 0 0 o 7 c,
7Y v
o o o 0] o o /l%l c. 0]
Thus, we replace (4.16) with the sequence
I 1
= 4,19
Pqt + Squ + Squ 0 ( )
II IT
= Q, 4,20
Pqt+Squ+quy 0 ( )
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Note that in (4.19), c, 1s 1identically zero, and so over that time step we
take c¢ = c(x,y) from (4.15). The rest of (4.19) is therefore linear (be-
cause c2 = cz(x,y) is known) and can be solved implicitly with relative
ease, Alternativély, the first three equations in (4.19) may be combined into

a variable coefficient wave equation for &n p, namely:

4

a2 c, 2

—5 (2n p) ==V (2n p); (4.21)
ot ¢ (x,y)

u and v are then obtained directly from the middle two equations of
(4.19). In (4.20) it is gn p that does not change over the time step.
The rest of the system is linear with constant coefficients and may also be

cast into a wave equation for c:

2
<= 1—l-c2 Vzc, (4.22)
t Yo®

@

Q
N

and again u and v are found directly from the middle two equations of
(4.20).

This completes the splitting method for the Euler equation. The temporal
and spatial discretization depends on the particular problem. Straight
splitting as described here will result in only first order accuracy in
time. Alternating the order of solving between (4.15) » (4.19) » (4.20)

to (4.20) » (4.19) » (4.15) will yield second order in time, see [2].
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5. EXTENSION TO THE NAVIER-STOKES EQUATIONS (N. S. CASE)

The Navier-Stokes equations may be written as:

Pqt + Aqu + A2q = qu

v By, +Cq +F +F (5.1)

XX vy Xy 1 2

where q, P, Ay, and Ap; are as defined in the preceding section. The

quantities on the right hand side are given by:

0 0 0 0 0 0
0
4
0 - 0 0
1 3 1 4
B, = — B, =—1]0 0 = 0 (5.2)
1 Re 0 0 0 2 Re 3 y
L 0 0 2; 0 0 0 m (5.3)
rp
- - -
0 0 0
1
0 0
c =L 3 (5.4)
Re L 0o o
3
0 0 0
0
0 0
—_ 0 0
F, - Y 2.2 e F, = —'L""zl(? 0 | (5.6)
PrRe P c pc

where the dimensionless viscous production function ¢ is given by

_ 2 2 2 2 2
% = §(ux + vy) + 2[ux + vy] + [uy + vx] . (5.7)
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We can now describe the solution method: after obtaining the "hyperbolic"

solution (see equations (4.15) to (4.22)), we go through the following steps:

1) From (5.2) to (5.6), it follows that q = 0, i.e., during the “viscous"
t

integration o = p(x,y).

2) multiply equation (5.1) by the matrix

[N eNelNel

OO O

o= OO0

[oNe NN
.

The resulting two "viscosity split" equations for u and v are

_ 1 4 1
u = [(§ u + uyy) + uxy] (5.8)
Ve T %E'[vxx + é'vxy + é’ xy]' (5.9)

These may be easily solved implicitly since they are linear p.d.e.”s with con-

stant coefficients.

(3) The last step is to solve the viscous part of the energy equation which

may be cast in the form:

] 2y _ Y 2,2 1 ¢
H(C)_m[V(C)]-*-m. (5-10)




——
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Note that &/p 1s a function of the squares of ug, Uyy Vs Vyo and
p(x,y) only and may therefore be taken as known from the previous step.
Equation (5.10) is then a scalar linear inhomogeneous heat equation which
again may be easily solved by implicit methods.

Note that all the operators In (5.8) and (5.9) may be taken to be
stable (i.€0y el <1) in L. In addition, because e > 0, Fp > O

2
(5.10) 1s also stabilizable under the Ll norm for cz' this assures the

b

Lo stability for 9.

Notice the total algorithm (4.15) > (4.22) » (5.8) » (5.10) may be

run partly in parallel thus enhancing its efficiency beyond the removal of the

stiffness. Schematically, the tree of calculation may be shown as follows:

__—-”’f(?““‘—-nﬂﬂllEEEf part of Euler (eq. 4.15)
\\
€)

4,22) (egs. 5.8,5.9)

(eq. 4.21) (eq.

(eq. 5.10)

Thus, if parallel processors are available, we run only three computations

instead of five.
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